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swept-back wings in the transonic speed range("). They started from the
idea, that in transonic flow control of the boundary layer development is of
prime importance, and that especially the shock-induced boundary layer
separation should be suppressed. This led to attempts to reduce the shock
strength by a special design of the aerofoil shape, which have been described
by Pearcey at the Zürich I.C.A.S. Congress"2). In some cases, Pearcey
succeeded in virtually eliminating the shock wave,t obtaining a to all intents
and purposes shock-free transonic flow with a local supersonic region of
appreciable extent and a high local maximum Mach number. Pearcey pointed
out that the aimed at sections with a 'peaky pressure distribution' are of
considerable interest to the aircraft designer from the point of view of
reducing transonic drag rise. However, these flows up to the present time are
obtained on a largely empirical basis.

These new developments then, clearly justify a renewed interest in the
classical hodograph methods. On the one hand the transonic potential flow
solutions become important as a theoretical reference for experimental
studies on the now proven feasibility of transonic shock-free flow, and gene-
rally as a basis for design methods for these flows. On the other hand,
Morawetz's theorems indicate that it would be at least extremely difficult to
obtain precise solutions in any other way; in particular these cannot be
obtained by posing a boundary value problem.

Moreover, by now developments in both numerical methods and computer
technology make it possible to devise computational methods to construct
flow patterns in the range of practical interest, which was impossible at the
time the mathematical theories were developed. As will be demonstrated, it
has in fact been possible to construct theoretically transonic potential flow
patterns that have the general characteristics of the flows around aerofoil
sections shown by Pearcey to be conducive to a shock-free real flow.

At the NLR, Amsterdam, we have for several years now been working on
the computation of these flows. In particular, a theory of quasi-elliptical
aerofoils has been developed, i.e. compressible flows related to the incom-
pressible flow around an elliptical cylinder, both in the zero lift and in the
lifting case. The, unfortunately, rather involved analysis required for the
circulatory flow problem gave occasion to reconsider the basic structure of
the theory, and we developed a new version based on integral transform
techniques.

Now this, as a merely technical device does, of course, not essentially extend
the theory, which is still firmly based in particular on Lighthill's work. On
the other hand, this new interpretation immediately clarifies the idea of
'mapping' analytic potentials into the solution space of the Chaplygin
equation, and unifies and generally tidies up the existing theory.

In the following a brief sketch of this theory will be attempted, referring

t He has promised to present some experimental evidence in the Discussion.
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2. THE ANALYTICAL HODOGRAPH THEORY

2.1  The hodograph equation; Chaplygin particular solutions

The basis of the hodograph theory is the Chaplygin equation for the
stream function of the plane potential flow of a compressible medium obeying
the isentropic gas law:

7—  1 4r  7 —1
r(1 — r)t/i„+ (1 +2 r) tp, + 1 ( ))+1 t)(Poo = 0 (1)

where — (1 1 )2 ,

q max

1
1

I y M2

The compressibility in the flow is governed by the magnitude of the
thermodynamically maximum possible speed q with respect to a fixed
reference speed, for which the asymptotic velocity  q  in the physical plane is
chosen. Defining  q , =  1, we write

T  (—

qmax

1 )2

Introducing the variable s(r) by

ds_ = 1 (1 _A42)112

di 2r

one can bring eq. (I) in its subsonic normal form:

IP,+ 000 =  7.(s)1/1,  (3)

T(s)=
d- log fp(1 M2)-1/21

ds

p = (1— T)

The definition of s involves an integration constant o-, which can be fixed by
the condition:

(2)

ex —>7112 for um. • o (4)
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a  then becomes the value of  s  for the sonicspeed [r = (y — 1)/(y + 1)] :

(+1)1/2 — 1)1/2
a = tanh' + I log [2(y — 1)] (2a)

y — 1 Y+ I

The Chaplygin particular solutions of eq. (1) are

	

0,0)e  ±ivO, (5)

OAT)= el2F(ay, by; v +1; T)

av+by — v—
Y —1

v(v +1)
as,b, =

2(y — 1)

and  F  denotes the (ordinary) hypergeometric function.
The Chaplygin function 1//,(r) is a meromorphic function of the complex

variable v, with simple poles at v= — 2, — 3, . . . ,  —ta, . . . having residues
which can be written :

—1nC„,0,„(r) (6)
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For subsonic speeds [r <(y — 1)/(y + 1)], 1415(r) behaves asymptotically for
large v as

IMT) V(T) (7a)

V( t) = (1—T)1' +1)/(/- )
1/4

[(y l — 1)]Ti.

for supersonic speeds there is a complicated oscillatory behaviour:
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belong to the interior flow field of the ellipse, which has not been drawn.
Note that the part  PABA'P  of the physical plane is mapped on the 'second'
sheet of the hodograph manifold.

2.3.  Construction of an integral operator

We now return to consider Chaplygin's original idea: the construction of a
compressible flow related to an incompressible one, by exploiting the
similarity between what are in fact particular solutions of Laplace's equation :

= gve-iv° and the Chaplygin particular solutions tke-ive. That is we want to
construct an operator, mapping the analytic potential of a given incom-
pressible flow around a body into the vector space of the Chaplygin particular
solutions of the hodograph equation. This operator is to be continuously
dependent on the parameter Ti, in such a way that for Ti —>0 the given flow
is recovered. Now probably the most logical basis for the construction of this
operator is a Mellin transform theorem for analytic functions  (see  ref. 14,
th. 31).

Roughly, let (K), qe-w, be an analytic function, regular in the sector

— < arg ( — ) < /3, 0  [1) < Tr

and let 0(0 = 0(1(:1°) for

0 (0 0(11b) for  a < b

in this sector (we write (1) M(oc, 13; a, b)).
Then the Mellin transform

is holomorphic in the

1
= 	

(I) 2ni

Now consider expressions
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which are obviously solutions of eq. (1) in domains of uniform convergence
of the integral.

To ensure convergence, the integrand in eq. (13) must be provided with an
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graph of the flow around a body, an example of which has already been
discussed. Here we can proceed in two different directions.

In the first place it is possible to localize the transformation, thus removing
the restriction (I) c M  altogether, and make any arbitrary analytical function
admissible as an original. This leads to the construction of an integral
operator in the sense of Bergman ; the derivation of the general operators
constructed by Lighthill(8) from our eqs. (13), (15), is quite straightforward"3).

Now, from the analytical point of view these operators, which can be
defined in the physical plane of an arbitrary incompressible potential flow,
are the most general possible. However, they are restricted from the physical
point of view in admitting subsonic flow speeds only. Lighthill indicated a
somewhat devious way to obtain transonic flow solutions from this operator
for analytic hodograph potentials of a certain type. This method was followed
in an earlier paper"5).

For the much more complicated work on the circulatory flow case, a more
direct way is preferable. This is, in fact, a mathematical interpretation and
generalization of the method employed by Goldstein, Lighthill and Craggs(4),
and Lighthill(6), in their analysis of the compressible flow related to the
incompressible one around the circular cylinder. This method can be de-
scribed as follows.

First, when (I)((,) is a hypergeometric function with singular points
(0, 1, oo), we know that a Mellin transform eq. (11) exists as a meromorphic
function defined in the entire v-plane except for a countable set of simple
poles, and the inversion integral eq. (12) is well known as the Barnes integral
representation for the hypergeometric function. This integral representation
can be used to construct the continuation of the hypergeometric series
convergent for l< 1 into series convergent for j r, 1> 1, and in fact to
continue the initial series on the whole Riemann surface underlying the
hypergeometric function. However, as by construction, we have similar
asymptotic properties in the v-plane for the integrands of eqs. (12) and (13),
we can equally well evaluate the integral eq. (13), provided the contributions
of the additional poles ofik ( r)f,(1-1) are taken into account.

It is clear that we can now use the whole machinery of the Mellin transform
theory to generalize this procedure, in particular we can consider functions,
constructed by a finite number of operations (sum, product, differentiation,
etc.) from a finite number of generalized hypergeometric functions, each
singular at a different triple of points (0, (:,„ oo).

For such functions (I), which constitute a sub-set  MHcM,  the Mellin
transforms can be built up from the elementary transforms by the corres-
ponding operations in the transform theory.

(KO is then a function singular at a finite number of isolated points in the
-plane, and the continuations around these singularities can be constructed

in a similar way as for the hypergeometric function.
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The resulting integrals of the type eq. (13), being evaluated by the residue
theorem, yield series involving the Chaplygin functions, the convergence of
which can be investigated using the known asymptotic properties of these
functions (eqs. 7). The whole point of this alternative procedure is now, that
while the operator eq. (13) is defined for subsonic values of r only, part of
the resulting series solution can be continued trivially into the supersonic
d orna in.

Formally, these two methods of analytic continuation (one leading to
Lighthill's integral operator, the other using explicit Mellin transforms)
compare with each other as a reversal in the order of integration.

Two methods have been indicated in this paragraph to continue analytically
the originally given solution eq. (13) out of its sector of regularity. Both
methods have been used by Lighthill(6' 8) to determine the function PTO.
The condition is that the stream function returns to its original value, when
going round the body in the physical plane of the compressible flow, or when
describing the corresponding contour in the hodograph.

From this analysis it follows that in the non-circulatory flow case, a class
of functions  L(r1)  is admissible (admitting of the conditions given with
eq. (14)), of which

.f(T1) e- " (16)

is the simplest.
In the circulatory flow case, however, a unique choice is dictated by the

properties of the dipole/vortex singularity in the hodograph as described in
section 2.2, and we have:

=
— v

(17)

3. COMPRFSSIBLE FLOW AROUND QUASI-ELLIPTICAL


AEROFOIL SECTIONS

3.1.  Introduction

The foregoing theory is now to be applied to obtain compressible flows
related to the incompressible flow around an elliptic cylinder. As we are
mainly interested in transonic flows, the second method described, using
explicit Mellin transforms, is to be used. This results in a theory, simple in
principle, but especially in the circulatory flow case already rather more
complicated from the computational point of view than one would like. Still,
this represents only one particular family of compressible flows, and one
would be inclined to be immediately interested in further developments, based
on more general incompressible flows. Unfortunately, this possibility is
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severely restricted by the necessity of having explicit expressions for the
complex potential in the hodograph available, which moreover must have

a very special analytical structure.
However, there is a second, much more simple way of generalizing the

solutions obtained : the theory being a linear one, we can add further par-

ticular solutions, and so we have an infinite number of additional parameters
at our disposal. In fact, the family of quasi-elliptical aerofoil sections is
astonishingly varied, and we have only just begun to explore its possibilities
in the non-circulatory flow case.

3.2.  Quasi-elliptical aerofoil flows: integral representations

We will now present explicit expressions for the Mellin transform of the

hodograph potential of the flow around an elliptical cylinder. These expres-
sions, substituted into the general inversion integrals for the stream function
and the co-ordinates (eqs. 12 and 15), and using eq. (17) for  fv(T1)  (or eq. (16)
in the zero lift case), represent the compressible flow solution in a sector of
the hodograph for subsonic flow speeds. How to obtain from this series

expansions representing the complete solution and permitting extension into
the transonic domain, will in section 3.3 only be indicated for the simplest

(non-circulatory) case.
Putting F = 0 in eq. 10we have

2 —(1+e)::
(DoG)

1(1 — )f —E(;)}"

and it is sufficient to consider

/0 = RI-00 -E01--1/2

This is clearly a product of two hypergeometric functions, and we have

f/i f 1,(—
'

(—v-1)!(v-1)!
= -

— 1)!
F(4-, —v; 1—v; r.)

v 1; v+I; E) (19)

Note that this expression has poles at the integers only: the poles at

v = +N+ 1 (N  integer)

in the separate terms just cancel each other out. Accordingly, the Mellin
transform is regular in the strip — 1 < Re v <0, as it should be.

(18)

(18a)
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The Mellin transform for the full eq. (10) becomes:

2)1/2e1/2 (_
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l )nn(l+e)(—V+111-1)!
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Again in this expression, poles occur only at the integers, the contributions
of the broken values of v cancelling out.

3.3.  Series expansions and analytical continuation in the .7erolift

case; PT  I)= e-vs 

Now consider the simplest case in the theory of quasi-elliptical aerofoils,
which can be represented by:

ioo
= Im - -f

v
tif (T)evE-s1"-T'-'11dv ,i/{1 } (21)

27-ci  

A10) being given by eq. (18a).

(An equivalent solution was given by LEvEY('6), using Cherry's theory, and
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The aeronautical engineer is, of course, quite used to working in con-
ditions in which the mathematical and physical aspects are not completely
understood, we need only mention turbulence, or separation. In fact, perhaps
the essence of his art consists in controlling such only partially mapped areas
of physical knowledge. However, he is not very likely to be interested in
discussions on such things as 'a shock wave which is ... so weak as to be
unobserved'. From his point of view, shock waves are important in terms of
shock-induced boundary layer separation, transonic drag rise, etc. It is in
this practical sense that the term 'shock-free transonic flow' is to be under-
stood, and such flows have been experimentally realised by Pearcey. For the
engineer transonic potential flow solutions may be useful in the way the
mathematical notion of potential flow is always used in practical aero-
dynamics: not as having predictive physical significance, but as representing
an ideal (loss free) reference to be approximated by careful design.

It remains, however, to elucidate from the physical point of view under
what conditions, in a practical sense, such shock-free flows can occur. At
the N.L.R., we are investigating this stability problem from the point of view
that the key may be in the time history of moving (weak) shock waves
originating in the flow, and we have designed a number of experiments to
study the interaction of 'shock-free' transonic flows and acoustic fields(181.

It would appear, then, that we have now both the theoretical and experi-
mental tools available to approach these longstanding problems from a
systematic basis. The current interest in the aerodynamic optimization of
swept winged lone range transports, both in the high subsonic and super-
sonic speed range, would seem to make this a not merely academic exercise.
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in this case; but this does not detract from the achievement in the engineering

sense.

The variations of drag coefficient (Fig. 3) with Mach number for the two

cases that 1 have illustrated show quite definitely that for the peaky aerofoil,

at the condition for which we saw that the flow was retarded smoothly from

a local Mach number of around 1.5, the drag coefficient was no higher than

it was at a significantly lower Mach number when there was no local super-

sonic flow. In fact, if anything it was lower. This is clear evidence that any
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shock waves that did exist in the flow were quite insignificant from a practical
point of view. On the other hand, the variation of drag coefficient for the
conventional type of aerofoil, for which we saw that there were strong
stationary shocks, the drag rose quite steeply as soon as these shock waves
formed. Eventually, of course, similar shocks form on the peaky aerofoil

and cause a similar steep rise in drag, but the advantage in Mach number for a
given value of drag is retained.

The comparison between the flow on the peaky aerofoil and the more con-

ventional situation is shown clearly by schlieren photographs (Fig. 4) taken
under comparable conditions of free-stream Mach number and lift coefficient.

(a) Peaky design; Mo - 0-73, C1, =0-77

Mo -0-72, Ci, —0-78  Mo  =0-74,  CL  =0-76
(h) Conventional design

FIG. 4 — Schlieren photographs appropriate to the local Mach number

distributions shown in Fig. 1
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Looking first at the photographs for the more conventional situation, the
thing which stands out and dominates the whole of this flow pattern is the
strong stationary shock wave. There are other types of weak waves showing
on the photographs that I think still have to be considered in finally settling
whether completely shock-free flows are obtained in the strict mathematical
sense. It should be noted that these photographs were obtained with a very
short duration spark exposure that arrests disturbances moving from down-
stream, against the stream; the disturbances, of course, form sharp pressure
fronts at these speeds. Indeed, for the conventional aerofoil in which the
stationary shock is so prominently seen, one can visualise these moving
waves building up into the stationary shock and also visualise them moving
around the outside of the local patch of supersonic flow. It may well be that
these moving waves play quite an essential part in the whole story and they
are being studied in detail by my colleague Mr. Moulden at the N.P.L."), as
well as by Mr. Nieuwland's colleagues at N.L.R.

In the photograph for the case where we noted (Figs. 1 and 2) an essential
shock-free compression from a local Mach number of near 1.5, the strong
stationary shock is completely absent. However, there are at least three
types of weak shock. First, I think we can identify the same moving waves.
Second, there are weak disturbances from carborundum grains placed on the
surface to fix boundary-layer transition. Third, near the end of the sonic
region, some of the weak disturbances could be of the type predicted by
Emmons many years ago"). Finally, there is in the flow a weak, inclined wave
that we suspect arose because, in fixing the rate of the isentropic compression,
we pitched it too near to that of a simple wave which we know will give a
convergence of characteristics within the local supersonic regime"); this
shock is therefore one of the type that will occur if the internal structure of the
local supersonic flow violates certain conditions. The existence of weak
shocks in this case is therefore no indication that they must always occur.

Indeed, there are other examples, of which I can show one (Fig. 5), in which
the shock-free local supersonic flow developed quite smoothly as Mach
number was increased from the point at which the flow first became super-
sonic locally. It can be seen that the pressure rises quite smoothly through
the value corresponding to sonic flow. The impression created by this example
is that the shock-free flows develop in quite a stable manner over a significant
range of free-stream Mach number. This same impression is strengthened by
examining the situation for the same 14`)/0 thick aerofoil as incidence is
increased from a low value (Fig. 6). At the lowest incidence, the occurrence of
local supersonic flow leads immediately to the fairly conventional stationary
shock. As incidence is increased, however, the shock-free flows develop and
the range of Mach number for which these appear to be stable increases.

This aerofoil was designed specifically to achieve this type of flow using the
knowledge that we had gained empirically about how to shape the leading

1-1 2
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EMMONS, H. W. The theoretical flow of a frictionless adiabatic, perfect gas in-
side a two-dimensional hyperbolic nozzle. NACA TN 1003 (1946)
MOULDFN, T. H. Some comments on the conditions in a local supersonic flow
region. N. P.L. Aero Report 1160 (1966)

R. C. Lock (National Physical Laboratory, Teddington, Middx., England):
(written comment — not delivered at lecture); I should like to amplify

Mr. Pearcey's remark on the importance of this work in providing a set of
standard 'exact' solutions by which other numerical methods can be judged.

I am referring here mainly to methods for calculating the flow about a given

aerofoil shape. These are of two kinds — those based on finite difference
techniques which aim to provide accurate numerical solutions of the exact

equations of motion; and approximate semi-empirical methods whose aim is
simply to provide results of adequate 'engineering' accuracy with very much
less computational effort than could ever be possible with any more refined

method. Either of these approaches is (at present at least) likely to be res-
tricted to examples when the flow is sub-critical (completely subsonic) every-




where or at most has a very small supersonic patch, unlike most of the more
advanced examples that Mr. Nieuwland has shown us. I would therefore like
to ask him if he would be prepared to make available a number of suitable

examples of this kind covering a range of thickness ratios, maximum
thickness position and (eventually) lift coefficient — for the benefit of other
workers on this very important problem.

B. M. Spec  (Nationaal Lucht- en Ruimtevaartlaboratorium, Amsterdam):

Mr. Nieuwland pointed at the desirability to have a criterion for the stability
of two-dimensional transonic potential flows. It may be of interest to say a
few words more about the unsteady aspects of such flows.

Wind tunnel experiments show that the formation of a steady shock wave
in two-dimensional transonic flows is generally preceded by a concentration

of unsteady waves. Weak unsteady waves can be observed also in Mr.
Pearcey's shock-free flow. Moreover, one of the counter arguments in the

discussion on the physical significance of two-dimensional potential transonic

flows has been that upstream moving disturbances would be unable to
propagate forwards into the finite supersonic region and build up into a shock
wave.

It can be shown that although this argument cannot be put in such a
general way, probably a relation exists between the behaviour of disturbance
waves and the generation of a shock wave.

Disturbances generated in the subsonic region downstream propagate
forwards, and due to the existence in the basic flow field of velocity gradients
perpendicular to the chordwise direction, they move faster at a larger distance
from the profile than close to the profile. The disturbance waves incline as they
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move forwards. The inclination depends on the value of the velocity gradients,
large gradients give a large inclination, small gradients a small inclination.
The waves reach the sonic line at a certain angle with the mean flow and for
this reason they can move forwards into the supersonic region.

The inclination of waves reaching the sonic line depends, except on the
velocity gradients perpendicular to the chord, on the position of the source.
When we restrict ourselves to disturbances generated in the boundary layer
and the wake, the inclination at the sonic line is larger for source positions
more downstream. However this effect is generally not very large due to the
fact that the inclination is mainly defined by the velocity gradients in the
neighbourhood of the sonic line where the propagation speed is minimal.

These considerations are illustrated in Figs. 1 and 2. In these figures the
phase pattern has been constructed for waves generated by a source located
at the trailing edge of two quasi-elliptic aerofoils. The profile given in Fig. 1
has large velocity gradients perpendicular to the chord. Consequently the
disturbance waves have a large inclination at the time that they reach the
supersonic region and they propagate fast and hardly deformed through this
region. The profile given in Fig. 2 has small velocity gradients perpendicular
to the chord. The waves have a small inclination at the sonic line and they
move slowly into the supersonic region. It appears that they tend to approach
characteristic lines of the basic flow field, characteristics being the equilibrium
condition for acoustic waves.

It should be noted again that the influence of the position of the source is
not very large in general. For the profile of Fig. 1, for instance, all disturbances
generated in the boundary layer and the wake, even from rather close behind

\
4)

AEROFOIL :0.11-0.775-1.300
CHORD LENGTH :0.33m
SOURCE AT TRAILING EDGE, FREQUENCY - 3 kHz

FIG. I.
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the following requirements: the boundary layer and the wake should be
quiet, the velocity eradients Nrpmdicular to the chord should be large and
the gradient in chord direction small. The last requirements apply mainly to
the region around the downstream part of the sonic line.

It appears consequently that profiles with a peaky pressure distribution are
favourable and that a stability criterion based on the behaviour of unsteady
waves will correspond to Mr. Pearcey's experience for shock-free flows.
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Dr. K. Kraemer (A.V.A., Bunsenstr. 10, 34 Goettingen, Germany): I want
to call attention to experiments at the Max-Planck-Institut fur Stromungs-
forschung at Goettingen begun by Dr. Koppe and presently continued by
dipl. phys. Meyer. In a two-dimensional channel a subsonic Chaplygin
flow with enclosed supersonic region was set up. Optical survey revealed the
flow to be 'shock-free', and to be rather insensitive to slight perturbations of
the upstream conditions. A shock could, of course, be produced by a
sufficient increase in channel-massflow. The boundary layer at the curved
channel walls was sucked off, but that at the plane side walls could not be
controlled. Therefore the intepretation of results in terms of two-dimensional
flow was difficult. I feel, however, that the explanation just given by Mr.
Spee is most convincing.

Evidence that a shock must occur at free stream Mach number exactly
equal to one follows from an axisymmetric, self similar solution of the
transonic equations of motion obtained by E. A. Muller and K. Matschat,
Goettingen (Congress at  Siresa).  This solution is analogous to the familiar
incompressible dipole-flow and should apply to the far field of any body at
Af =1. It does contain a shock.




