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SUMMARY

A new development of the hodograph theory of Chaplygin, Cherry and
Lighthill is based on integral transform methods. Transonic potential flows
around a family of both non-lifting and lifting quasi-elliptical aerofoils are
obtained. Various examples are shown, and the use of the solutions in the
design of shock-free transonic flows is discussed.

I. INTRODUCTION

The use of function theoretic methods in the theory of plane compressible
fluid flow, based on the hodograph transformation, has a long history going
well back into the nineteenth century. By the hodograph transformation,
introduced in fluid dynamics by the Dutch mathematician Molenbroek in
in 1890‘", the quasi-linear partial differential equation for the plane potential
flow of a gas is transformed into a linear one by a change of dependent and
independent variables. This permits the study of non-linear flow phenomena
by the solution of linear problems.

The first practical application was given by Chaplygin (1904), in his
classical paper‘®’ on the subsonic outflow of a gas jet from a slit. His basic
idea was to construct a series expansion for the analytic potential describing
the incompressible jet flow in hodograph variables, and then to substitute
particular solutions of the hodograph equation for compressible flow (the
Chaplygin particular solutions) into this series, thus relating a compressible
flow to a given incompressible one.

The first application of hodograph methods to the problem of compressible
flow around a body is given by the well-known von Karman-Tsien theory®
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(1939), in which a particular simplifying approximation to the pressure-
density relation is used; this results however in these flows remaining en-
tirely subsonic.

The theory obtained its definitive form mainly in the hands of Bergman,
Cherry and Lighthill. The first solution for a transonic flow related to the
non-circulatory incompressible flow around a circular cylinder was given by
Goldstein, Lighthill and Craggs'*’, and independently by Cherry‘®’, who also
presented a numerically worked out example. This work was later extended
to the circulatory flow case by Lighthill'®, and by Cherry'”’. Lighthill also
gave a more general integral operator form of the theory®: a basically
similar theory also had been developed by Bergman'® on the basis of his
general theory of integral operators. This form of the theory is applicable
to any incompressible potential flow given in the physical plane, but re-
stricted to subsonic flow speeds. These solutions can be extended into the
transonic régime when series expansions of a certain type for the hodograph
potential of the original flow are available. This condition means, however,
a severe restriction on the class of admissible incompressible flows.

This general class of solutions, when defining transonic potential flows,
was the subject of an at times rather emotional debate on what became known
as the ‘transonic controversy’. These discussions resulted from attempts to
give both mathematical and physical interpretations to these results.

At first, the controversy took the simple form, that the mathematical
solutions seemed to indicate the possibility of continuous transition from
subsonic to supersonic flow speeds and back, a phenomenon generally not
observed in wind tunnel experiments. Experimentally, under transonic flow
conditions recompression of the flow from locally supersonic regions to
subsonic flow speeds usually occurs through shock waves, this often being
accompanied by the occurrence of shock-induced boundary layer separation,
so that any basis for comparison with a potential flow solution is lost.

It was then suggested by Busemann and Guderley'!®" that transonic
potential flow solutions lacked any physical significance whatsoever, as these
could be interpreted as solutions of a boundary value problem that is not
continuously dependent on its boundary data. The latter fact, conjectured
from physical arguments and made plausible by constructing particular
examples by these authors, was later proved in a mathematically rigorous
fashion in a series of fundamental papers by Morawetz (sec. 4). The Busemann—
Guderley argument, so forcefully underlined by the intricacies of experi-
mentally observed transonic flows, became more or less generally accepted
and tended to lessen the practical aerodynamicist’s interest in the class of
solutions under discussion.

At this point, new developments were brought in from the experimental
side. At the National Physical Laboratory, Holder and Pearcey were en-
gaged Iin an experimental programme on the design of wing sections for
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swept-back wings in the transonic speed range!'". They started from the
idea, that in transonic flow control of the boundary layer development is of
prime importance, and that especially the shock-induced boundary layer
separation should be suppressed. This led to attempts to reduce the shock
strength by a special design of the aerofoil shape, which have been described
by Pearcey at the Zirich I.C.A.S. Congress'!?. In some cases, Pearcey
succeeded in virtually eliminating the shock wave, obtaining a to all intents
and purposes shock-free transonic flow with a local supersonic region of
appreciable extent and a high local maximum Mach number. Pearcey pointed
out that the aimed at sections with a ‘peaky pressure distribution’ are of
considerable interest to the aircraft designer from the point of view of
reducing transonic drag rise. However, these flows up to the present time are
obtained on a largely empirical basis.

These new developments then, clearly justify a renewed interest in the
classical hodograph methods. On the one hand the transonic potential flow
solutions become important as a theoretical reference for experimental
studies on the now proven feasibility of transonic shock-free flow, and gene-
rally as a basis for design methods for these flows. On the other hand,
Morawetz’s theorems indicate that it would be at least extremely difficult to
obtain precise solutions in any other way; in particular these cannot be
obtained by posing a boundary value problem.

Moreover, by now developments in both numerical methods and computer
technology make it possible to devise computational methods to construct
flow patterns in the range of practical interest, which was impossible at the
time the mathematical theories were developed. As will be demonstrated, it
has in fact been possible to construct theoretically transonic potential flow
patterns that have the general characteristics of the flows around aerofoil
sections shown by Pearcey to be conducive to a shock-free real flow.

At the NLR, Amsterdam, we have for several years now been working on
the computation of these flows. In particular, a theory of quasi-elliptical
aerofoils has been developed, i.e. compressible flows related to the incom-
pressible flow around an elliptical cylinder, both in the zero lift and in the
lifting case. The, unfortunately, rather involved analysis required for the
circulatory flow problem gave occasion to reconsider the basic structure of
the theory, and we developed a new version based on integral transform
techniques.

Now this, as a merely technical device does, of course, not essentially extend
the theory, which is still firmly based in particular on Lighthill’s work. On
the other hand, this new interpretation immediately clarifies the idea of
‘mapping’ analytic potentials into the solution space of the Chaplygin
equation, and unifies and generally tidies up the existing theory.

In the following a brief sketch of this theory will be attempted, referring

1 He has promised to present some experimental evidence in the Discussion.
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for the mathematical details to Lighthill’s papers‘®’, and to ref. 13, to be
issued shortly. Then some examples of our results will be shown, leaving
aside the most difficult practical problem: the development of the appropriate
numerical techniques. At the end, we will return to what is perhaps the most
intriguing question of all —the physical interpretation, if any, of these
theoretical results.

However, before going on I would like to acknowledge the work of my
colleagues W. J. Boerstoel, G. van Eek and M. J. M. G. van Gennip, who
contributed significantly in various parts of this project, in particular in the

crucial numerical work.
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2. THE ANALYTICAL HODOGRAPH THEORY
2.1 The hodograph equation; Chaplygin particular solutions

The basis of the hodograph theory is the Chaplygin equation for the
stream function of the plane potential flow of a compressible medium obeying
the isentropic gas law:

2— 1/ +1
(=Wt 1+t )t (1=t ) hgp = 0 (1)
y—1 4t y—1
q 2
where r=() , 0=21<1
qmux
B 1
a 2 1
| I
+y—1M2

The compressibility in the flow is governed by the magnitude of the
thermodynamically maximum possible speed ¢,., with respect to a fixed
reference speed, for which the asymptotic velocity ¢, in the physical plane is
chosen. Defining g, =1, we write

Introducing the variable s(1) by

ds 1
— = _—(1-M?'? 2
dt 21'( ) 2

one can bring eq. (1) in its subsonic normal form:
I\l”.\'s+l)b98 = T1(5)ljls (3)

d
T(s) = a5 log {p(1 -M?*" 1!2}

p=(1-1)Uo—D

The definition of s involves an integration constant g, which can be fixed by
the condition:

e’ — 1l/? for Gmax = O (4
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¢ then becomes the value of s for the sonic speed [t = (y—1)/(y+ D]:

o 1\1/2 —1\2
e ol LT gt ++log[2(y—1)] (2a)
y—1 y+1
The Chaplygin particular solutions of eq. (1) are
Y(m)e*™, (5)
Y (1) =t"2F(a,, b,;v+1;7)
1
a,+b,=v——
y—1
(v+1
ab, = —-‘(Vi )
20y=1)

and F denotes the (ordinary) hypergeometric function.

The Chaplygin function y (1) is a meromorphic function of the complex
variable v, with simple poles at v=—2, —3, ..., —m, ... having residues
which can be written:

- ”]le!’lm(r) (6)

(a,— 1)1 (m—=b,)!

Co = an—m=1) 1(=by) L (m)?

~_——g

2am

2am

for large m

For subsonic speeds [t <(y—1)/(y+1)], ¥, (1) behaves asymptotically for
large v as

Y1) ~ V(z)e™ (7a)

L[ (== s
V)= {1—[(}?4 l)/(y—l)]r} ’

for supersonic speeds there is a complicated oscillatory behaviour:

V(D) ~ 2| V(@)

e'sin(vt+4in), |argv|<n (7b)

~ | V(r)| e {sin(vt+in) —cotvmcos(vi+im)}, |arg(—v)|<m (7c)
where ¢ is defined by

dr 1 y—1
—=—(M*=1)Y?, t=0 f =
&~ 2" ) R
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2.2 The hodograph transformation, incompressible flow

Thus far, we have reviewed the more advantageous features of the hodo-
graph theory: a non-linear differential equation has been transformed into a
linear one, possessing a convenient set of particular solutions having easily
accessible analytical properties. However, there are also serious drawbacks,
mainly stemming from the complication under the hodograph transformation
of the topological structure of the solution being described.

As an example, consider the flow which will be the starting point for our
further developments: the incompressible circulatory potential flow around
an elliptical cylinder.

This is given by:

1
®(z)=z,+—+illogz, (8a)
I

Z=2Z1+- (8b)

2y
Now introducing the conjugate velocity
do  do / dz

" Tdz dz,

dz dz, ©)

we have one of the few cases in which the hodograph transformation can be

obtained simply by algebraic elimination of z, from egs. (8) and (9), and the
complex potential in the hodograph variable { can be written:

I 1 -
m=( t --)s”zi(C;—C)(ﬁz—U}”z

1-¢ 1—¢
c | £ —1,‘2[-2[« i
- L 4 U= ONE,— d
+Im(|—§+|—gg)6 41(91 9 (S19) (
I | 1
o lor =0+ +log(1—eD) (10)
4 1= 1—g

5 I l1+e_1+¢ 4g 2] 2
with £1,L2 = 2£*+ e 1_(1+£)2 |—4—

Analysis of this function shows that the basic structure of the solution is
given by a Riemann surface of two sheets, with (;, {, as first-order branch
points. (For 0<I'<2,| ¢ | <l we have | {, | <1, |{;|>| 1/&|). In one of the
sheets, the potential ® has a singularity of the type

; 1
—ir {—1--_-C +log(1— C)}
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(dipole+vortex) at {=1, and ® is regular at {=1/e. In the other sheet, the
potential is regular at { =1, and has a singularity of strength

1
il'{ ,+I0g(1—s§)}
1—&l

at the point {=1/e. It follows that (=1 and {=1/¢ are branch points of
logarithmic type for the complex potential @; for the stream function, how-
ever, these points are not branch points as the periods (4 2nI) are real.

Note that as I'—0, the singularities at {=1, {=1/¢ become first-order
branch points by confluence with {,, ;.

A sketch of the mapping between the physical plane and the hodograph
has been prepared in Fig. 1 for the case of fore and aft symmetery (e real).
The branch point , in the hodograph corresponds to a saddle point for the
isochores and isogonals in the physical plane, and the point {=1, of course,
corresponds to infinity in the physical plane. The singularities {=1/¢ and {,

jj\‘ﬂ\/ ,//____

LOWER SHEET
_}‘I’=C°NST[UPPER SHEET

194" | _@.CONST
~——q CONST
Fi1G. 1 — Hodograph of symmetrical circulatory incompressible flow

around elliptical cylinder; streamlines, isochores and isogonals
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belong to the interior flow field of the ellipse, which has not been drawn.
Note that the part PABA'P of the physical plane is mapped on the ‘second’
sheet of the hodograph manifold.

2.3. Construction of an integral operator

We now return to consider Chaplygin’s original idea: the construction of a
compressible flow related to an incompressible one, by exploiting the
similarity between what are in fact particular solutions of Laplace’s equation:
{*=¢"e " and the Chaplygin particular solutions i, °. That is we want to
construct an operator, mapping the analytic potential of a given incom-
pressible flow around a body into the vector space of the Chaplygin particular
solutions of the hodograph equation. This operator is to be continuously
dependent on the parameter t,, in such a way that for 7, —0 the given flow
is recovered. Now probably the most logical basis for the construction of this
operator is a Mellin transform theorem for analytic functions (see ref. 14,
th. 31).

Roughly, let ®({), { =ge~", be an analytic function, regular in the sector

—a<arg(=0<f, 0=(a,f)<nm
and let O =0(¢]  for [{]-w
o) =0(¢|" for |{]|->0, a<b

in this sector (we write ® € M(a, f3; a, b)).
Then the Mellin transform

() = j

is holomorphic in the strip a < Re v<b of the v-plane, and

0

O(-0)~ L (11)

1 k+im 0
B (—C)“dv.[ O(—{)7MdE, a<k<b (12)

27 J k-0
Now consider expressions of the form:

= Im®(z,0;1,) (13)

s 1 k+io ] 0
o dfv(r)fv(rl)e"“"“”dvj‘ (-7 7NdE,

27Tf k—ixn )
®eM(x,p;a,b), a<k<b, |Fn—0|<n

which are obviously solutions of eq. (1) in domains of uniform convergence
of the integral.
To ensure convergence, the integrand in eq. (13) must be provided with an
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asymptotic behaviour as a function of v equivalent to that in eq. (12);
furthermore we require f,(t,) to be ~t, /2 for 7,—0, so that ®—®d, and
T <@-D/(y+1).

As we have
|{|" =exp[v(logg—logq,)], 4. =1
and Y (1) ~ V(t)e™ for gl
¥ y+1
we want f,(t,) to be a meromorphic function of v with simple poles only
(v=0, —1, —2,... being excluded), having the asymptotic behaviour for
large v
Szy) ~ A(ry)e™ (14)

Then, the integrands in eqgs. (12) and (13) have similar asymptotic behaviour
for large v, and we have ®—® for 7, —»0 by eq. (4).

We have now obtained (except for the further determination of f,(7,)) a
solution of eq. (1), related in the way required to an analytic function, and
defined in the sector of regularity of the original function for

0<T<1’__ .
y+1
Starting from eq. (13), we can construct the expression for the co-ordinates
in the physical plane corresponding to the stream function Im ®(z, 0; 7,), by
using the definition of stream function and velocity potential in the com-
pressible flow, and the Chaplygin equations. The result is:

R T, yz .
ity r—r)””_”

L[ e om0 (g Ly e | a-pta;
o = Dt )y | (=074

k—io V™

1 k+io eq‘,nl’v 0

- me"“”“"(w:m—z"%wv(r))fv(r,)dvj
k—iw

d’(—C)'“"dC]
GbeM(a,fiab), a<k<b (15)

where the prime denotes differentiation with respect to 7, and the bar indicates
the complex conjugate.

2.4. Analytical continuation; determination of f.(t,)

The next problem is the analytic continuation of the solution out of the
original sector of regularity around the singularities that determine the hodo-
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graph of the flow around a body, an example of which has already been
discussed. Here we can proceed in two different directions.

In the first place it is possible to localize the transformation, thus removing
the restriction ® € M altogether, and make any arbitrary analytical function
admissible as an original. This leads to the construction of an integral
operator in the sense of Bergman; the derivation of the general operators
constructed by Lighthill® from our eqs. (13), (15), is quite straightforward**.

Now, from the analytical point of view these operators, which can be
defined in the physical plane of an arbitrary incompressible potential flow,
are the most general possible. However, they are restricted from the physical
point of view in admitting subsonic flow speeds only. Lighthill indicated a
somewhat devious way to obtain transonic flow solutions from this operator
for analytic hodograph potentials of a certain type. This method was followed
in an earlier paper!'®),

For the much more complicated work on the circulatory flow case, a more
direct way is preferable. This is, in fact, a mathematical interpretation and
generalization of the method employed by Goldstein, Lighthill and Craggs'*,
and Lighthill'®’, in their analysis of the compressible flow related to the
incompressible one around the circular cylinder. This method can be de-
scribed as follows.

First, when ®({) is a hypergeometric function with singular points
(0, 1, c0), we know that a Mellin transform eq. (11) exists as a meromorphic
function defined in the entire v-plane except for a countable set of simple
poles, and the inversion integral eq. (12) is well known as the Barnes integral
representation for the hypergeometric function. This integral representation
can be used to construct the continuation of the hypergeometric series
convergent for |{|<1 into series convergent for |{|>1, and in fact to
continue the initial series on the whole Riemann surface underlying the
hypergeometric function. However, as by construction, we have similar
asymptotic properties in the v-plane for the integrands of eqs. (12) and (13),
we can equally well evaluate the integral eq. (13), provided the contributions
of the additional poles of /(1)f,(t,) are taken into account.

It is clear that we can now use the whole machinery of the Mellin transform
theory to generalize this procedure, in particular we can consider functions,
constructed by a finite number of operations (sum, product, differentiation,
etc.) from a finite number of generalized hypergeometric functions, each
singular at a different triple of points (0, {,, o).

For such functions @, which constitute a sub-set M;c M, the Mellin
transforms can be built up from the elementary transforms by the corres-
ponding operations in the transform theory.

®({) is then a function singular at a finite number of isolated points in the
{-plane, and the continuations around these singularities can be constructed
in a similar way as for the hypergeometric function.
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The resulting integrals of the type eq. (13), being evaluated by the residue
theorem, yield series involving the Chaplygin functions, the convergence of
which can be investigated using the known asymptotic properties of these
functions (egs. 7). The whole point of this alternative procedure is now, that
while the operator eq. (13) is defined for subsonic values of T only, part of
the resulting series solution can be continued trivially into the supersonic
domain.

Formally, these two methods of analytic continuation (one leading to
Lighthill’s integral operator, the other using explicit Mellin transforms)
compare with each other as a reversal in the order of integration.

Two methods have been indicated in this paragraph to continue analytically
the originally given solution eq. (13) out of its sector of regularity. Both
methods have been used by Lighthill®* ® to determine the function f,(z,).
The condition is that the stream function returns to its original value, when
going round the body in the physical plane of the compressible flow, or when
describing the corresponding contour in the hodograph.

From this analysis it follows that in the non-circulatory flow case, a class
of functions f,(z,) is admissible (admitting of the conditions given with
eq. (14)), of which

Jlr) =e™™ (16)

is the simplest.

In the circulatory flow case, however, a unique choice is dictated by the
properties of the dipole/vortex singularity in the hodograph as described in
section 2.2, and we have:

ll’—ur?_lu)_']'_%fﬂi’/’—v(ﬁ) (17)

fv(rl)E 1 v

3. COMPRESSIBLE FLOW AROUND QUASI-ELLIPTICAL
AEROFOIL SECTIONS

3.1. Introduction

The foregoing theory is now to be applied to obtain compressible flows
related to the incompressible flow around an elliptic cylinder. As we are
mainly interested in transonic flows, the second method described, using
explicit Mellin transforms, is to be used. This results in a theory, simple in
principle, but especially in the circulatory flow case already rather more
complicated from the computational point of view than one would like. Still,
this represents only one particular family of compressible flows, and one
would be inclined to be immediately interested in further developments, based
on more general incompressible flows. Unfortunately, this possibility is



G. Y. Nieuwland 219

severely restricted by the necessity of having explicit expressions for the
complex potential in the hodograph available, which moreover must have
a very special analytical structure.

However, there is a second, much more simple way of generalizing the
solutions obtained: the theory being a linear one, we can add further par-
ticular solutions, and so we have an infinite number of additional parameters
at our disposal. In fact, the family of quasi-elliptical aerofoil sections is
astonishingly varied, and we have only just begun to explore its possibilities
in the non-circulatory flow case.

3.2. Quasi-elliptical aerofoil flows: integral representations

We will now present explicit expressions for the Mellin transform of the
hodograph potential of the flow around an elliptical cylinder. These expres-
sions, substituted into the general inversion integrals for the stream function
and the co-ordinates (egs. 12 and 15), and using eq. (17) for f*(z,) (or eq. (16)
in the zero lift case), represent the compressible flow solution in a sector of
the hodograph for subsonic flow speeds. How to obtain from this series
expansions representing the complete solution and permitting extension into
the transonic domain, will in section 3.3 only be indicated for the simplest
(non-circulatory) case.

Putting ['=01in eq. 10 we have

2—(1+&)

0= ey (9

and it is sufficient to consider
I, = {(1-D(1—e)} 2 (18a)

This is clearly a product of two hypergeometric functions, and we have

(V]
M {1} E.[ I(={)~""'d¢

=@

(=v=D!(v=1)! ; 0
=y -vii-vie
4ot "!((__Vi;!%)!F(%,er1;v+%;ﬂ) (9)

Note that this expression has poles at the integers only: the poles at
v=+N+1 (N integer)

in the separate terms just cancel each other out. Accordingly, the Mellin
transform is regular in the strip — 1 < Re v<0, as it should be.
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The Mellin transform for the full eq. (10) becomes:

MO} = ({,{)! e ”2{2( Gl (8o

p

(— \+m—])'
(=3

F(_%, —v+m; —v+m.|.%;,c1_)cr!n—v
9

(r=m=3)!

= A+ m—1)!
4 +£§5-UW1+E-M-H(“tT%y) (—v—m—3)!

' +m;v+m+3; ) !
X 3 v—m-—
( ,v+miv+m C )(C:) ¢ }

r
—5 (1+2)

cosmy

(v—m—3)!

1"2 = - m m+ ( v+m )
—4(LQ)”%‘”{";J—U(L+ 1’('9*

xF(% —v+m+1; —v+m+1; C)C‘”"‘“
2

. +%‘,,§0(_1)M(1+8 (( 1)1(—1’—}11—%)|

C 1/2
xF({f vim+1;v+m+3; : )( ‘) C""‘”}
2
{ +T( yuﬁ L (20)
2 sin my

Again in this expression, poles occur only at the integers, the contributions
of the broken values of v cancelling out.

F
()

2 vCcosmy

3.3. Series expansions and analytical continuation in the zero lift
case; f,(ty) ="

Now consider the simplest case in the theory of quasi-elliptical aerofoils,
which can be represented by:

| ;
w—mﬁaf WD)t dy {1} 1)

#(1,) being given by eq. (18a).
(An equivalent solution was given by LEVEY"'®), using Cherry’s theory, and
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by the author in ref. 13, starting from the operator form of Lighthill’s
theory.)

The integral can be evaluated by summing the residues of the poles in the
right-hand v-half plane, and one obtains the series

a0

Ly= ¥ 4,4 (t)e "atm (22)

n=0

n—4)!
where /l.l‘n=((_Hi!)n—!f'—(;,—ﬂ:!—n;ﬁ)

and we have to take the imaginary part to obtain the stream function. This
series can be shown to converge for t<t,. The analytic continuation of this
series is now obtained by summing the residues of the poles in the left-hand
v-half plane for the part of the integrand corresponding to the first term in
M {1,}, and by summing in the right-hand v-half plane for the second term.

The resulting series can be written for —0 20 respectively

£ 8
e i —(n+1/2)(s1 +i0)
tLy L =1 J 15 s 1jiWaeqplr)e™ T 2NGES
n=0
. (n+1/2)(s, +i0)
iy, - piyalWl gy a(t) e 1AL }

+ Z i3 _pe —nC(1). MO (23)
n=2

(n=1)!

where Arn-12= l(_--;)!"

'F(i,n+§;n+1;5)

Ap,wiiyz = ie"* 12— -—(—’Ei@!
(—H!(n+1)!
- a(n—1)! ) )
Ay .= “Hln= 5)!F(%’"1 n+1:¢)

The first of this series is obtained by summing over the residues of the poles
of the Mellin transform, and converges for t> 7, at least when 7, is sufficiently
large (more precisely, when e’ *1<| I/ |). The second series is the contribu-
tion of the additional poles of / (7) in the left-hand v-half plane, and converges
for all 0=t<1. When we let ¢,,,— o0, the L, series reduces to the corres-

ponding series in the incompressible flow case, and the L} series vanishes
For sufficiently large values of ¢g,,,,, we can also study the continuation
into the region corresponding to the region | { |>| 1/e | in the incompressible
flow, by closing the contour of integration in the left-hand v-half plane. In all

F(d,n+3:n+42;¢)
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cases of practical interest, however, this region merely describes the con-
tinuation of the flow into the interior of the aerofoil, and will therefore here
be ignored.

At this point, we still have to obtain the series expansions for the complete
aerofoil flow by writing for the coefficients (cf. egs. (18), (18a)):

('i.p= zj‘i,p_(l'i's)ir',pfl' Cl.() =2 {24)

We can now easily work out the contribution of the initial series ; on the
two-sheeted Riemann surface underlying the compressible flow solution, the
result is represented in Fig. 2.

//,’_h\“\\ ///__-‘\'\\
// _L1 ’gLZ‘ \ ’,/ L1 3
/ | \ / \ .
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/ -
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i
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Fi1G. 2 — Analytical continuation of series solution Eq. (22), (23)
on two-sheeted Riemann surface

3.4. Examples

We will now present some explicit examples of the flows obtained, simul-
taneously demonstrating some of the possibilities of generalizing the solutions.

The series LY in eq. (23) being convergent on the whole hodograph, can
be added to the initial series and its analytic continuations, and we consider
a three parameter (1., ¢, 4) family of symmetrical aerofoils by choosing ¢ real
and the series L, 4+(4—1)L] as the commencing branch of the solution. For
A=1, the solution discussed in the previous paragraph is recovered, for
/=0 one obtains a symmetrical aerofoil, having in addition fore and aft
symmetry. It appears (see ref. 15 for a further discussion) that for 1
sufficiently high, this doubly symmetrical aerofeil will have cusped ends
(Fig. 3). Choosing 42# 0 one obtains aerofoil sections having a stagnation point
at the leading edge and a cusped trailing edge, in fact the leading edge nose
radius can be controlled by 4 (Fig. 4). For certain choices of 4, one can obtain
pressure distributions, which have the *peaky’ character shown by Pearcey to
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be conducive to a shock-free real flow; a good example is given in Fig. 5, where
we have sketched in the low speed pressure distribution for comparison.

Further increasing A for fixed 7, and &, the interpretability of the solution
is finally destroyed by a limit line singularity piercing through the aerofoil
contour.

It is also possible to produce cambered (but non-lifting) aerofoils. In
Fig. 6, an example is given of the linearised effect of adding the stream
function +0-16y, cos 20 to the 7, =011, £=0-75, 2=0-9 aerofoil. The non-
linear effect of this addition destroys (on a micro-scale) the closure of the
aerofoil both at the leading and trailing edge, this must be corrected for by
adding a further compensating solution (see ref. 13).

For the circulatory flow case, we very recently obtained our first result:
the slightly compressible flow (M, =0-2) around an about 509 thick aero-
foil. Here, also, there is some closure difficulty at the trailing edge requiring
corrections. For the present a more practical example is a non-lifting aero-
foil computed using the integral transformation to be used in the lifting case,
i.e. using the f,(t,) given in eq. 17. As is shown in Fig. 7, this is quite a
healthy-looking specimen, which leads one to expect that the shapes obtained
in the circulatory flow case will also be satisfactory from the practical point
of view.
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F1G. 5§ — Symmetrical quasi-elliptical aerofoil section,
7.=0-11, e =0-75, A=1-375 (Egs. (22), (23)).
Pressure distribution in compressible and incompressible flow
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4, PHYSICAL ASPECTS: THE TRANSONIC CONTROVERSY

Up to this point, the subject-matter announced in the title of this paper:
the design of shock-free transonic flows, has not been made good, as we have
merely been discussing methods of computing transonic potential flows.
Now, what guarantee is there of the aerofoil shapes theoretically obtained
producing a shock-free real flow ?

This question is currently being investigated in an experimental programme
based on a family of quasi-elliptical aerofoils, which is performed in collabora-
tion with the National Physical Laboratory. Until this research has been
completed, the answer to this question is, that we do not really know.
However, the fact that some of the flows obtained exhibit the characteristics
of the aerofoils proved to be virtually shock-free in Pearcey’s transonic
experiments, leads one to expect that these might be satisfactory from this
point of view; on the other hand there is good reason to suspect that other
shapes, defined by the same family of potential flow solutions, will in fact
generate a shocked flow. What is clearly required is some criterion, based on a
physical understanding of the flow, which would separate the ‘sheep from the
goat’. This brings us right back into the middle of the old ‘transonic contro-
versy’ already touched upon in the introduction.

Now what made this discussion at times somewhat confusing is that there
are three points of view involved: the mathematician’s, the physicist’s and the
engineer’s, and that these are all relevant but should not be mixed up.

The most precise statements came, of course, from the mathematical side:
the famous non-existence theorems of Mrs. Morawetz. One of these'!”
states, roughly, that a transonic potential flow solution has no neighbouring
potential flow solutions for an arbitrary, small change of the boundary in the
supersonic region. The mathematical implication of this already classical
result is clear: the boundary value problem for the equations of transonic
potential flow around a given shape has in general no solution. (Note that the
solutions discussed in this paper are defined in a quite different way, on the
other hand these define only one particular family of shapes.)

However, it is difficult to see how to come to any definite physical con-
clusion from these mathematical facts. The unqualified assertion that a
transonic potential flow has no physical significance would seem to be
bordering on the trivial: strictly speaking potential flows as such never have
physical significance without interpretation in the context of a physically
more complete theory (involving viscosity and unsteadiness); or to be down-
right false if it is meant to imply that transonic flows are necessarily dominated
by shock waves. In other words: to draw a strict physical conclusion from
Morawetz’s results would seem to be impossible, just because a potential
flow model does not contain enough of the relevant physics of the flow.
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The aeronautical engineer is, of course, quite used to working in con-
ditions in which the mathematical and physical aspects are not completely
understood, we need only mention turbulence, or separation. In fact, perhaps
the essence of his art consists in controlling such only partially mapped areas
of physical knowledge. However, he is not very likely to be interested in
discussions on such things as ‘a shock wave which is. .. so weak as to be
unobserved’. From his point of view, shock waves are important in terms of
shock-induced boundary layer separation, transonic drag rise, etc. It is in
this practical sense that the term ‘shock-free transonic flow” is to be under-
stood, and such flows have been experimentally realised by Pearcey. For the
engineer transonic potential flow solutions may be useful in the way the
mathematical notion of potential flow is always used in practical aero-
dynamics: not as having predictive physical significance, but as representing
an ideal (loss free) reference to be approximated by careful design.

It remains, however, to elucidate from the physical point of view under
what conditions, in a practical sense, such shock-free flows can occur. At
the N.L.R., we are investigating this stability problem from the point of view
that the key may be in the time history of moving (weak) shock waves
originating in the flow, and we have designed a number of experiments to
study the interaction of *shock-free” transonic flows and acoustic fields''®.

It would appear, then, that we have now both the theoretical and experi-
mental tools available to approach these longstanding problems from a
systematic basis. The current interest in the aerodynamic optimization of
swept winged long range transports, both in the high subsonic and super-
sonic speed range, would seem to make this a not merely academic exercise.
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DiscuUssSION

H. H. Pearcey (National Physical Laboratory, Teddington, Middx., England):
Mr. Nieuwland indicated that at the N.P.L. we had succeeded in achieving
transonic flows that were essentially shock-free and that I had promised to
present some of this experimental evidence on this occasion. Before doing this,
however, | would like to take the opportunity of congratulating Mr. Nieuw-
land on a very fine piece of work. I have had the privilege of being associated
with him over the past two or three years during the progress of his research,
and in my opinion this work is the most significant application yet of mathe-
matical theory to the solution of problems of transonic flows for aerofoils
that are of practical significance in aircraft design. I mean here, of course,
aerofoils that have a finite thickness somewhere between the flat plate and
circular cylinder that have hitherto been so popular with mathematicians,
aerofoils that have round leading edges, and aerofoils that carry lift. In
concentrating his lecture on one of the most interesting and important aspects
of his research, namely, the derivation of aerofoils that produce shock-free
compressions from local supersonic flow, he modestly ommitted to describe
other aspects of his work that will, I am sure, be of great practical significance
too. He has provided us with exact solutions for sub-critical flows on sym-
metrical aerofoils and will shortly do the same for lifting aerofoils. These
exact solutions will form the basis for consolidating the more approximate
methods on which aircraft engineers will be able to rely for many years to
come in wing-section design.
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The work on these problems of transonic flows has, for many years, been
going in ‘fits and starts’ or, in more with-it phraseology, has been charac-
terised by ‘stop and go’. I think we now have the signal for ‘all systems go’,
and I hope that this will lead to the start of a steady and productive stream of
research and design.

There are too many reasons to discuss in a brief contribution why the situa-
tion has been a stop and go one for so long. One of these reasons has un-
doubtedly been the extreme mathematical difficulties that have prevented the
most eminent mathematicians from deriving solutions that even approach
the physical realities of the situation. We have had to wait for the rare
combination of abilities that Mr. Nieuwland has brought to bear on this
problem in such a timely fashion. He has handled brilliantly the mathematical
complexities in extending the framework provided by his eminent predecessors.
He has exploited to the full the possibilities of numerical methods that can
now be used on modern digital computers. He has shown a remarkable
persistence in pressing this work to a fruitful outcome. Above all, he has
directed his efforts in a physically realistic way, and in this connection I
would like to pay tribute to the insight that he has given me on the physical
nature of some of these problems.

In the absence of the mathematical tools that he is now providing us, some
of us have had to stumble along as best we could experimentally and empiri-
cally to solve practical problems of aircraft design. I now hope that we can
proceed in collaboration with him in a less painful and more rational fashion.

To encourage him in pressing on with his research, and others to join us,
I would now like to produce some of the many experimental results that show
that effectively shock-free flows are possible and that, more generally,
isentropic compressions can be exploited to reduce the strength of shock
waves when they do occur.

The first example that I have selected (Fig. 1) is one in which we can
compare a flow that has an essentially shock-free compression from a fairly
high local supersonic Mach number of the order of 1-5 with the more familiar
situation on another aerofoil, of the same thickness and at the same con-
ditions, but for which the much more familiar strong pressure rise is present,
that is, the strong pressure rise associated with a stationary shock terminating
the local supersonic flow. This aerofoil was also carrying quite a lot of lift
and the shock-free conditions were obtained on a section designed specifically
for an efficient swept-back wing. The contrast between these two situations
is indeed quite dramatic, and provides clear evidence that very substantial
isentropic compressions can be obtained. The peaky aerofoil represented here
was derived in a series of iterative experiments by my colleague, Mr. J.
Osborne. The actual experimental observations of the pressures locally on
the surface (Fig. 2) indicate some scatter from the mean curve in the super-
sonic compression region and suggest that weak shocks may have been present



230 Aerospace Proceedings 1966
0
Peaky design
————— Conventional design
o i ig gz
|67
Pressure
|- 4 ratio,
= plH,
-7\ _lo. 4
Local |21 _— \P/Shock wave
Mach 1
I
number \
. Upper surface
4N —06
-.:____‘2-
Lower surface —08
1-0
L. E. x/c—a T.E.
Local Mach number distributions tor free stream
Mach number = 0:73 and lift coefticient = 0:77
Peaky design
Conventional design
FiG. | — Comparisons for a peaky design (N.P.L.9283) and a good

conventional design (N.P.L. 9210); local Mach number distributions and
section shapes

in this case; but this does not detract from the achievement in the engineering
sense.

The variations of drag coefficient (Fig. 3) with Mach number for the two
cases that 1 have illustrated show quite definitely that for the peaky aerofoil,
at the condition for which we saw that the flow was retarded smoothly from
a local Mach number of around 1-5, the drag coefficient was no higher than
it was at a significantly lower Mach number when there was no local super-
sonic flow. In fact, if anything it was lower. This is clear evidence that any
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shock waves that did exist in the flow were quite insignificant from a practical
point of view. On the other hand, the variation of drag coefficient for the
conventional type of aerofoil, for which we saw that there were strong
stationary shocks, the drag rose quite steeply as soon as these shock waves
formed. Eventually, of course, similar shocks form on the peaky aerofoil
and cause a similar steep rise in drag, but the advantage in Mach number for a
given value of drag is retained.

The comparison between the flow on the peaky aerofoil and the more con-
ventional situation is shown clearly by schlieren photographs (Fig. 4) taken
under comparable conditions of free-stream Mach number and lift coefficient.

(a) Peaky design; My =073, C, =077

My =072, C,=0-78 My =074, C., =076
(b) Conventional design

Fi1G. 4 — Schlieren photographs appropriate to the local Mach number
distributions shown in Fig. 1
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Looking first at the photographs for the more conventional situation, the
thing which stands out and dominates the whole of this flow pattern is the
strong stationary shock wave. There are other types of weak waves showing
on the photographs that I think still have to be considered in finally settling
whether completely shock-free flows are obtained in the strict mathematical
sense. It should be noted that these photographs were obtained with a very
short duration spark exposure that arrests disturbances moving from down-
stream, against the stream; the disturbances, of course, form sharp pressure
fronts at these speeds. Indeed, for the conventional aerofoil in which the
stationary shock is so prominently seen, one can visualise these moving
waves building up into the stationary shock and also visualise them moving
around the outside of the local patch of supersonic flow. It may well be that
these moving waves play quite an essential part in the whole story and they
are being studied in detail by my colleague Mr. Moulden at the N.P.L.", as
well as by Mr. Nieuwland’s colleagues at N.L.R.

In the photograph for the case where we noted (Figs. 1 and 2) an essential
shock-free compression from a local Mach number of near 1-5, the strong
stationary shock is completely absent. However, there are at least three
types of weak shock. First, I think we can identify the same moving waves.
Second, there are weak disturbances from carborundum grains placed on the
surface to fix boundary-layer transition. Third, near the end of the sonic
region, some of the weak disturbances could be of the type predicted by
Emmons many years ago'?’. Finally, there is in the flow a weak, inclined wave
that we suspect arose because, in fixing the rate of the isentropic compression,
we pitched it too near to that of a simple wave which we know will give a
convergence of characteristics within the local supersonic regime'®’; this
shock is therefore one of the type that will occur if the internal structure of the
local supersonic flow violates certain conditions. The existence of weak
shocks in this case is therefore no indication that they must always occur.

Indeed, there are other examples, of which I can show one (Fig. 5), in which
the shock-free local supersonic flow developed quite smoothly as Mach
number was increased from the point at which the flow first became super-
sonic locally. It can be seen that the pressure rises quite smoothly through
the value corresponding to sonic flow. The impression created by this example
is that the shock-free flows develop in quite a stable manner over a significant
range of free-stream Mach number. This same impression is strengthened by
examining the situation for the same 149 thick aerofoil as incidence is
increased from a low value (Fig. 6). At the lowest incidence, the occurrence of
local supersonic flow leads immediately to the fairly conventional stationary
shock. As incidence is increased, however, the shock-free flows develop and
the range of Mach number for which these appear to be stable increases.

This aerofoil was designed specifically to achieve this type of flow using the
knowledge that we had gained empirically about how to shape the leading

H2
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edge. If this is not done, quite the opposite situation arises in which the flow
with strong stationary shock waves seems to be the order of the day (left-
hand side of Fig. 6). The differences in the way in which drag varies with
Mach number for these various cases demonstrate that these shock waves are
not just our interpretation of a pressure jump in the surface pressure, but
indeed do give rise to wave drag as one would expect, and this is in contrast
to the situation for the aerofoil in which shock-free flow was achieved and for
which there were substantial regions of local supersonic flow without any
increase in drag.

In conclusion, I would like to stress very strongly the practical importance,
not only of the shock-free type of flow that Mr. Nieuwland has demonstrated
mathematically and which I have been illustrating from experimental results,
but also the wider implications of being able to obtain isentropic compressions
from high local Mach numbers in the more general sense, even if at the end of
these compressions we accept some weak stationary shock waves. I stress this
because the aircraft designer, particularly for the swept wings so frequently
used for high subsonic transports and variable-sweep wings — to quote just
two examples —is pushing all the time to increase thickness (to reduce
structure weight), to carry higher wing-loadings (for efficient cruise), and to
keep his sweepback as low as possible (to achieve acceptable take-off and
landing conditions and, again, low structure weight). All of these trends tend
to increase the local super velocities and hence to increase the pressure on
accepting some degree of local supersonic flow. Furthermore, whatever type
of flow he chooses at the design condition, he also has to cope with off-design
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excursions both for increased flight Mach number and for increased Cp
in gust-encounters and manoeuvres. These off-design excursions will inevi-
tably lead to the development of local supersonic flows over the surface of
his wings. Our task therefore is to ensure that these local supersonic flows
can develop smoothly and that the deceleration from the high velocities can
occur either without shock waves or with shock waves that are ‘little ones’
that can be tamed.
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R. C. Lock (National Physical Laboratory, Teddington, Middx., England):
(written comment — not delivered at lecture); 1 should like to amplify
Mr. Pearcey’s remark on the importance of this work in providing a set of
standard ‘exact’ solutions by which other numerical methods can be judged.
I am referring here mainly to methods for calculating the flow about a given
aerofoil shape. These are of two kinds — those based on finite difference
techniques which aim to provide accurate numerical solutions of the exact
equations of motion; and approximate semi-empirical methods whose aim is
simply to provide results of adequate ‘engineering’ accuracy with very much
less computational effort than could ever be possible with any more refined
method. Either of these approaches is (at present at least) likely to be res-
tricted to examples when the flow is sub-critical (completely subsonic) every-
where or at most has a very small supersonic patch, unlike most of the more
advanced examples that Mr. Nieuwland has shown us. I would therefore like
to ask him if he would be prepared to make available a number of suitable
examples of this kind — covering a range of thickness ratios, maximum
thickness position and (eventually) lift coefficient — for the benefit of other
workers on this very important problem.

B. M. Spee (Nationaal Lucht- en Ruimtevaartlaboratorium, Amsterdam):
Mr. Nieuwland pointed at the desirability to have a criterion for the stability
of two-dimensional transonic potential flows. It may be of interest to say a
few words more about the unsteady aspects of such flows.

Wind tunnel experiments show that the formation of a steady shock wave
in two-dimensional transonic flows is generally preceded by a concentration
of unsteady waves. Weak unsteady waves can be observed also in Mr.
Pearcey’s shock-free flow. Moreover, one of the counter arguments in the
discussion on the physical significance of two-dimensional potential transonic
flows has been that upstream moving disturbances would be unable to
propagate forwards into the finite supersonic region and build up into a shock
wave.

It can be shown that although this argument cannot be put in such a
general way, probably a relation exists between the behaviour of disturbance
waves and the generation of a shock wave.

Disturbances generated in the subsonic region downstream propagate
forwards, and due to the existence in the basic flow field of velocity gradients
perpendicular to the chordwise direction, they move faster at a larger distance
from the profile than close to the profile. The disturbance waves incline as they
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move forwards. The inclination depends on the value of the velocity gradients,
large gradients give a large inclination, small gradients a small inclination.
The waves reach the sonic line at a certain angle with the mean flow and for
this reason they can move forwards into the supersonic region.

The inclination of waves reaching the sonic line depends, except on the
velocity gradients perpendicular to the chord, on the position of the source.
When we restrict ourselves to disturbances generated in the boundary layer
and the wake, the inclination at the sonic line is larger for source positions
more downstream. However this effect is generally not very large due to the
fact that the inclination is mainly defined by the velocity gradients in the
neighbourhood of the sonic line where the propagation speed is minimal.

These considerations are illustrated in Figs. 1 and 2. In these figures the
phase pattern has been constructed for waves generated by a source located
at the trailing edge of two quasi-elliptic aerofoils. The profile given in Fig. 1
has large velocity gradients perpendicular to the chord. Consequently the
disturbance waves have a large inclination at the time that they reach the
supersonic region and they propagate fast and hardly deformed through this
region. The profile given in Fig. 2 has small velocity gradients perpendicular
to the chord. The waves have a small inclination at the sonic line and they
move slowly into the supersonic region. It appears that they tend to approach
characteristic lines of the basic flow field, characteristics being the equilibrium
condition for acoustic waves.

It should be noted again that the influence of the position of the source is
not very large in general. For the profile of Fig. 1, for instance, all disturbances
generated in the boundary layer and the wake, even from rather close behind

AEROFOIL :0.11-0.775-1.300
CHORD LENGTH :0.33m
SOURCE AT TRAILING EDGE, FREQUENCY - 3kHz

FiG. 1.



238 Aerospace Proceedings 1966

AEROFOIL : 0.12-0.700-0.000
CHORD LENGTH:0.33m
SOURCE AT TRAILING EDGE, FREQUENCY - 3kHz

FiG. 2.

the supersonic region, move fast and without difficulty through the supersonic
region, their angle being larger than the maximum characteristic angle in the
supersonic region. For the profile of Fig. 2 all disturbances generated down-
stream of the supersonic region behave as shown in this figure. They practically
come to a standstill in the downstream part of the supersonic region, and
concentrate in a narrow strip. The width of this strip depends on the local
velocity gradient in chord direction and diminishes as the velocity gradient
increases.

So far it has been assumed that the unsteady waves, which will always be
generated in the real transonic flow around a profile in the boundary layer
and the wake, do not interact with the basic potential flow. It has been shown
however by Kuo'"’ that waves increase in amplitude when travelling upstream
in a decelerating transonic flow region consuming the kinetic energy of the
steady flow. Such a region with decelerating flow is the downstream part of the
supersonic region.

In a flow with small velocity gradients perpendicular to the chord where the
waves concentrate and accumulate in this region the amount of Kinetic
energy withdrawn from the steady flow becomes large, and this energy con-
sumption takes place in a very small region, one can no longer consider the
waves to be superimposed on the potential flow. This possibly indicates the
breakdown of the smooth flow and the formation of a shock.

It can be concluded that in order to stay far away from a situation which
probably favours the generation of a stable shock-wave the flow has to meet
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the following requirements: the boundary layer and the wake should be
quiet, the velocity gradients perpendicular to the chord should be large and
the gradient in chord direction small. The last requirements apply mainly to
the region around the downstream part of the sonic line.

It appears consequently that profiles with a peaky pressure distribution are
favourable and that a stability criterion based on the behaviour of unsteady
waves will correspond to Mr. Pearcey’s experience for shock-free flows.
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Dr. K. Kraemer (A.V.A., Bunsenstr. 10, 34 Goettingen, Germany): I want
to call attention to experiments at the Max-Planck-Institut fur Stromungs-
forschung at Goettingen begun by Dr. Koppe and presently continued by
dipl. phys. Meyer. In a two-dimensional channel a subsonic Chaplygin
flow with enclosed supersonic region was set up. Optical survey revealed the
flow to be ‘shock-free’, and to be rather insensitive to slight perturbations of
the upstream conditions. A shock could, of course, be produced by a
sufficient increase in channel-massflow. The boundary layer at the curved
channel walls was sucked off, but that at the plane side walls could not be
controlled. Therefore the intepretation of results in terms of two-dimensional
flow was difficult. I feel, however, that the explanation just given by Mr.
Spee is most convincing.

Evidence that a shock must occur at free stream Mach number exactly
equal to one follows from an axisymmetric, self similar solution of the
transonic equations of motion obtained by E. A. Muller and K. Matschat,
Goettingen (Congress at Stresa). This solution is analogous to the familiar
incompressible dipole-flow and should apply to the far field of any body at
M =1. It does contain a shock.





